

Logistic Regression

Natalie Parde, Ph.D. Department of Computer Science University of Illinois at Chicago

CS 521: Statistical Natural Language Processing Spring 2020

Many slides adapted from Jurafsky and Martin (https://web.stanford.edu/~jurafsky/slp3/).

What is logistic regression?

- Fundamental supervised machine learning algorithm
- Used for text classification
- Very close relationship with neural networks!

Did someone say "neural networks"?

- Coming up in a couple weeks!
- One way to view feedforward neural networks is as a series of logistic regression classifiers stacked on top of one another

Logistic regression can be used for binary classification or multinomial classification.

- Binary
 - Class A vs. Class B
- Multinomial
 - Class A vs. Class B vs. Class C vs. Class D....

Logistic regression can be used for binary classification or multinomial classification.

Binary

- Class A vs. Class B
- Multinomial- -
 - Class A vs. Class B vs. Class C vs. Class D....

How does logistic regression differ from naïve Bayes?

Naïve Bayes

Generative classifier

Logistic Regression

Discriminative classifier

Not sure what naïve Bayes is? Check out the course slides from CS 421: <u>http://www.natalieparde.com/teaching/cs 421 fall2019/Naive%20Bayes,%</u>20Text%20Classification,%20and%20Evaluation%20Metrics.pdf

Generative Classifiers

- Goal: Understand what each class
 looks like
 - Should be able to "generate" an instance from each class
- To classify an instance, determines which class model better fits the instance, and chooses that as the label

Discriminative Classifiers

- Goal: Learn to distinguish between two classes
 - No need to learn that much about them individually
- To classify an instance, determines whether the distinguishing feature(s) between classes is present

More formally....

• Recall the definition of naïve Bayes:

More formally....

• Recall the definition of naïve Bayes:

A generative model like naïve Bayes makes use of the likelihood term

• Likelihood: Expresses how to generate an instance *if it knows it is of class c*

More formally....

However, naïve Bayes and logistic regression also have some similarities.

Both are **probabilistic** classifiers

Both perform supervised machine learning

- Supervised machine learning: Machine learning with labeled training and test data
 - Generally formalized as xs (instances) and ys (labels), where an individual instance is an x⁽ⁱ⁾, y⁽ⁱ⁾ pair

Which is better ...naïve Bayes or logistic regression?

- Depends on the task and the dataset
- For larger datasets, logistic regression is usually better
- For smaller datasets, naïve Bayes is sometimes better
- Naïve Bayes is easy to implement and faster to train
- Best to experiment with multiple classification models to determine which is best for your needs

In general, supervised machine learning systems for text classification have four main components.

- Feature representation of the input
 - Typically, a **vector** of features $[x_1^{(j)}, x_2^{(j)}, ..., x_n^{(j)}]$ for a given instance $x^{(j)}$
- **Classification function** that computes the estimated class, \hat{y}
 - Sigmoid
 - Softmax
 - Etc.
- Objective function or loss function that computes error values on training instances
 - Cross-entropy loss function
- Optimization function that seeks to minimize the loss function
 - Stochastic gradient descent

Likewise, supervised machine learning systems generally have two phases.

• Training

 For logistic regression, you train weights w and a bias b using stochastic gradient descent and cross-entropy loss

• Test

 Using your trained model, you compute P(y|x) and return the highest probability label

Classifier Building Blocks: The Sigmoid

- Goal of binary logistic regression:
 - Train a classifier that can decide whether a new input observation belongs to class a or class b
- To do this, the classifier learns a vector of weights (one associated with each input feature) and a bias term
- A given weight indicates how important its corresponding feature is to the overall classification decision
 - Can be positive or negative
- The **bias term is a real number** that is added to the weighted inputs

Classifier Building Blocks: The Sigmoid

- To make a classification decision, the classifier:
 - Multiplies each feature for an input instance *x* by its corresponding weight (learned from the training data)
 - Sums the weighted features
 - Adds the bias term b
- This results in a weighted sum of evidence for the class:

• Letting *w* be the weight vector and *x* be the input feature vector, we can also represent the weighted sum *z* using vector notation:

However, this still computes a linear function of

- What we really want is a **probability** ranging from 0 to 1
- To do this, we pass *z* through the sigmoid function, $\sigma(z)$
 - Also called the **logistic function**, hence the name **logistic regression**

Sigmoid Function

• Sigmoid Function:

•
$$\sigma(x) = \frac{1}{1+e^{-x}}$$

- Given its name because when plotted, it looks like an *s*
- Results in a value y ranging from 0 to 1

•
$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + e^{-w \cdot x + b}}$$

There are many useful properties of the sigmoid function!

- Maps a real-valued number to a 0 to 1 range
 - Just what we need for a probability....
- Squashes outlier values towards 0 or 1
- Differentiable
 - Necessary for learning....

How do we convert the sigmoid output to a real probability?

• Just make all the cases sum to 1

•
$$P(y = 1) = \sigma(z)$$

• $P(y = 0) = 1 - \sigma(z)$

How do we make a classification decision?

Choose a decision boundary

- For binary classification, often 0.5
- For a test instance x, assign a label c if P(y = c | x) is greater than the decision boundary
 - If performing binary classification, assign the other label if P(y = c|x) is lower than or equal to the decision boundary

I'm just thrilled that I have five final exams on the same day.

---- Sarcastic or not sarcastic?

I'm just thrilled that I have five final exams on the same day.

----- Sarcastic or not sarcastic?

Feature

Contains 😳

Contains 😊

Contains "I'm"

I'm just thrilled that I have five final exams on the same day.

---- Sarcastic or not sarcastic?

Feature	Weight
Contains 🙄	2.5
Contains 😊	-3.0
Contains "I'm"	0.5

I'm just thrilled that I have five final exams on the same day.

----- Sarcastic or not sarcastic?

I'm just thrilled that I have five final exams on the same day.

----- Sarcastic or not sarcastic?

Feature	Weight	Value
Contains 🙄	2.5	1
Contains 😊	-3.0	0
Contains "I'm"	0.5	1

I'm just thrilled that I have five final exams on the same day.

----- Sarcastic or not sarcastic?

Feature	Weight	Value
Contains 🙄	2.5	1
Contains 😊	-3.0	0
Contains "I'm"	0.5	1

Bias = 0.1

I'm just thrilled that I have five final exams on the same day.

---- Sarcastic or not sarcastic?

Feature	Weight	Value
Contains 🙄	2.5	1
Contains 😊	-3.0	0
Contains "I'm"	0.5	1

Bias = 0.1

$$z = b + \sum_{i} w_{i} x_{i}$$

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

I'm just thrilled that I have five final exams on the same day.

----- Sarcastic or not sarcastic?

Feature	Weight	Value	Bias = 0.1
Contains 😳	2.5	1	$z = h + \sum w_i r_i$
Contains 😊	-3.0	0	$\sum_{i=0}^{2} \sum_{i=0}^{2} w_{i} x_{i}$
Contains "I'm"	0.5	1	$y = \sigma(z) = \frac{1}{1 + e^{-z}}$

$$P(\operatorname{sarcasm}|x) = \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = \sigma(0.1 + 3.0) = \sigma(3.1) = \frac{1}{1 + e^{-3.1}} = 0.96$$

I'm just thrilled that I have five final exams on the same day.

----- Sarcastic or not sarcastic?

Feature	Weight	Value	Bias = 0.1
Contains 🙄	2.5	1	$z = h + \sum w_i r_i$
Contains 😊	-3.0	0	$\sum_{i=0}^{2} V_{i} \sum_{i=0}^{N} W_{i} x_{i}$
Contains "I'm"	0.5	1	$y = \sigma(z) = \frac{1}{1 + e^{-z}}$

$$P(\operatorname{sarcasm}|x) = \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = \sigma(0.1 + 3.0) = \sigma(3.1) = \frac{1}{1 + e^{-3.1}} = 0.96$$

 $P(\text{not sarcasm}|x) = 1 - \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = 1 - \sigma(0.1 + 3.0) = 1 - \sigma(3.1) = 1 - \frac{1}{1 + e^{-3.1}} = 1 - 0.96 = 0.04$

I'm just thrilled that I have five final exams on the same day.

---- Sarcastic or not sarcastic?

Feature	Weight	Value	Bias = 0.1
Contains 🙄	2.5	1	$z = h + \sum w_i r_i$
Contains 😊	-3.0	0	$\sum_{i=0}^{2} V_{i} \sum_{i=0}^{N} W_{i} X_{i}$
Contains "I'm"	0.5	1	$y = \sigma(z) = \frac{1}{1 + e^{-z}}$

$$P(\operatorname{sarcasm}|x) = \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = \sigma(0.1 + 3.0) = \sigma(3.1) = \frac{1}{1 + e^{-3.1}} = 0.96$$

$$P(\operatorname{not sarcasm}|x) = 1 - \sigma(0.1 + (2.5 * 1 + (-3.0) * 0 + 0.5 * 1)) = 1 - \sigma(0.1 + 3.0) = 1 - \sigma(3.1) = 1 - \frac{1}{1 + e^{-3.1}} = 1 - 0.96 = 0.04$$

A little bit about features....

- Anything can be a feature!
 - Specific words or n-grams
 - Information from external lexicons
 - Grammatical elements
 - Part-of-speech tags
- In neural classification models, the feature vector often includes word embeddings
 - More about these next week!

Learning in Logistic Regression

- How are the parameters of a logistic regression model, *w* and *b*, learned?
 - Loss function
 - Optimization function
- Goal: Learn parameters that make \hat{y} for each training observation as close as possible to the true y

Loss Function

- We need to determine the distance between the predicted and true output value
 - How much does \hat{y} differ from y?
- We do this using a conditional maximum likelihood estimation
 - Select *w* and *b* such that they maximize the log probability of the true *y* values in the training data, given their observations *x*
- This results in a negative log likelihood loss
 - More commonly referred to as cross-entropy loss

Cross-Entropy Loss

- Most common loss function for many classification tasks
- Measures the distance between the probability distributions of predicted and actual values
 - $loss(y_i, \widehat{y_i}) = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}}$
 - *C* is the set of all possible classes
 - $p_{i,c}$ is the actual probability that instance *i* should be labeled with class *c*
 - $\hat{p_{i,c}}$ is the predicted probability that instance *i* should be labeled with class *c*
- Ranges from 0 (best) to 1 (worst)
- Observations with a big distance between the predicted and actual values have much higher cross-entropy loss than observations with only a small distance between the two values

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day. 🙄	0.7	0.3	1	0

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.	0.7	0.3	1	0

$$loss(y_i, y_i') = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log \widehat{p_{i,sarcastic}} - p_{i,not \ sarcastic} \log p_{i,not \ sarcastic}$$

1/23/20

Natalie Parde - UIC CS 521

I'm just thrilled that I have five final exams on the same day.

Not Sarcastic

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.	0.7	0.3	1	0

 $loss(y_i, y_i') = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log \widehat{p_{i,sarcastic}} - p_{i,not sarcastic} \log p_{i,not sarcastic}$ $loss(y_i, y_i') = -1 * \log 0.7 - 0 * \log 0.3$

I'm just thrilled that I have five final exams on the same day.

 $loss(y_{i}, y_{i}') = -\sum_{c=1}^{|C|} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log \widehat{p_{i,sarcastic}} - p_{i,not \ sarcastic} \log \widehat{p_{i,not \ sarcastic}} \log p_{i,not \ sarcastic} \log p_{i,not \ sarcastic}$

I'm just thrilled that I have five final exams on the same day.

Instance	Predicted	Predicted	Actual	Actual
	Probability:	Probability: Not	Probability:	Probability: Not
	Sarcastic	Sarcastic	Sarcastic	Sarcastic
I'm just thrilled that I have five final exams on the same day.			1	0

What if our predicted values were switched?

I'm just thrilled that I have five final exams on the same day.

Predicted **Predicted** Actual Actual Instance **Probability: Probability: Not Probability: Probability: Not** Sarcastic Sarcastic Sarcastic Sarcastic I'm just thrilled that I have five final 0.3 0.7 0 exams on the same day. 🙄 $loss(y_i, y_i') = -\sum_{i,c} p_{i,c} \log \widehat{p_{i,c}} = -p_{i,sarcastic} \log p_{i,sarcastic} - p_{i,not \ sarcastic} \log p_{i,not \ sarcastic}$

$$loss(y_i, y_i') = -1 * \log 0.3 - 0 * \log 0.7 = -\log 0.3 = 0.52$$
 Greater loss value!

Why does minimizing the negative log probability work?

- Perfect binary classifier:
 - Assign probability of 1.0 to the correct class
 - Assign probability of 0.0 to the incorrect class
- Thus, higher \hat{y} is better
- Correspondingly, negative log of 1.0 → no loss (-log 1.0 = 0); negative log of 0.0 → infinite loss (-log 0.0 = ∞)

Finding Optimal Weights

Goal: Minimize the loss function defined for the model

•
$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(y^{(i)}, x^{(i)}; \theta)$$

- For logistic regression, $\theta = w, b$
- One way to do this is by using gradient descent

- Finds the minimum of a function by:
 - Figuring out the direction (in the space of θ) the function's slope
 - Moving in the opposite direction
- For logistic regression, loss functions are convex
 - Only one minimum
 - Gradient descent starting at any point is guaranteed to find it

- Finds the minimum of a function by:
 - Figuring out the direction (in the space of θ) the function's slope
 - Moving in the opposite direction
- For logistic regression, loss functions are convex
 - Only one minimum
 - Gradient descent starting at any point is guaranteed to find it

- Finds the minimum of a function by:
 - Figuring out the direction (in the space of θ) the function's slope
 - Moving in the opposite direction
- For logistic regression, loss functions are **convex**
 - Only one minimum
 - Gradient descent starting at any point is guaranteed to find it

- Finds the minimum of a function by:
 - Figuring out the direction (in the space of θ) the function's slope
 - Moving in the opposite direction
- For logistic regression, loss functions are convex
 - Only one minimum
 - Gradient descent starting at any point is guaranteed to find it

- How much do we move?
 - Value of the slope
 - $\frac{d}{dw}f(x;w)$
 - Weighted by a learning rate η
- Faster learning rate → move w more on each step
- So, the change to a weight at time t is actually:

•
$$w^{t+1} = w^t - \eta \frac{d}{dw} f(x; w)$$

Remember, in actual logistic regression, there are weights for each feature.

• The gradient is then a vector of the slopes of each dimension:

•
$$\nabla_{\theta} L(f(x;\theta),y) = \begin{bmatrix} \frac{d}{dw_1} L(f(x;\theta),y) \\ \dots \\ \frac{d}{dw_n} L(f(x;\theta),y) \end{bmatrix}$$

- This in turn means that the final equation for updating θ is:
 - $\theta_{t+1} = \theta_t \eta \nabla L(f(x; \theta), y)$

The Gradient for Logistic Regression

- Recall our cross-entropy loss function:
 - $loss(y_i, \hat{y}_i) = -\sum_{c=1}^{|C|} y \log \hat{y} = -\sum_{c=1}^{|C|} y \log \sigma(\boldsymbol{w} \cdot \boldsymbol{x} + b)$
- The derivative for this function is:

Stochastic Gradient Descent Algorithm

 $\theta \leftarrow 0 \#$ initialize weights to 0

repeat until convergence:

For each training instance $(x^{(i)}, y^{(i)})$ in random order: $g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$ # change to θ to maximize loss $\theta \leftarrow \theta - \eta g$ # go the other way instead return θ

I'm just thrilled that I have five final exams on the same day.

----- Sarcastic

Feature	Weight	Value
Contains 🙄	0	1
Contains 😊	0	0
Contains "I'm"	0	1

I'm just thrilled that I have five final exams on the same day.

Sarcastic

Feature	Weight	Value
Contains 🙄	0	1
Contains 😊	0	0
Contains "I'm"	0	1

Bias (b) = 0Learning rate $(\eta) = 0.1$

 $\theta^{t+1} = \theta^t - \eta \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$

I'm just thrilled that I have five final exams on the same day.

---- Sarcastic

Feature	Weight	Value
Contains 🙄	0	1
Contains 😊	0	0
Contains "I'm"	0	1

Bias (b) = 0Learning rate $(\eta) = 0.1$

$$\theta^{t+1} = \theta^t - \eta \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$$

$$\nabla_{\theta} L(f(x^{(i)};\theta), y^{(i)}) = \begin{bmatrix} \frac{dL_{CE}(w,b)}{dw_{1}} \\ \frac{dL_{CE}(w,b)}{dw_{2}} \\ \frac{dL_{CE}(w,b)}{dw_{3}} \\ \frac{dL_{CE}(w,b)}{dw_{3}} \\ \frac{dL_{CE}(w,b)}{db} \end{bmatrix} = \begin{bmatrix} (\sigma(w \cdot x + b) - y)x_{1} \\ (\sigma(w \cdot x + b) - y)x_{2} \\ (\sigma(w \cdot x + b) - y)x_{3} \\ \sigma(w \cdot x + b) - y \end{bmatrix} = \begin{bmatrix} (\sigma(0) - 1)x_{1} \\ (\sigma(0) - 1)x_{2} \\ (\sigma(0) - 1)x_{3} \\ \sigma(0) - 1 \end{bmatrix} = \begin{bmatrix} (0.5 - 1)x_{1} \\ (0.5 - 1)x_{2} \\ (0.5 - 1)x_{3} \\ (0.5 - 1) \end{bmatrix} = \begin{bmatrix} -0.5 * 1 \\ -0.5 * 0 \\ -0.5 \end{bmatrix} = \begin{bmatrix} -0.5 \\ 0 \\ -0.5 \\ -0.5 \end{bmatrix}$$

Natalie Parde - UIC CS 521

I'm just thrilled that I have five final exams on the same day.

---- Sarcastic

Feature	Weight	Value
Contains 🙄	0	1
Contains 😊	0	0
Contains "I'm"	0	1

Bias (b) = 0Learning rate $(\eta) = 0.1$

 $\theta^{t+1} = \theta^t - \eta \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$

I'm just thrilled that I have five final exams on the same day.

---- Sarcastic

Feature	Weight	Value
Contains 🙄	0	1
Contains 😊	0	0
Contains "I'm"	0	1

Bias (b) = 0Learning rate $(\eta) = 0.1$

$$\theta^{t+1} = \theta^t - \eta \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$$

• • • • • • • • • • • •

Mini-Batch Training

- Stochastic gradient descent chooses a single random example at a time ...this can result in choppy movements!
- Often, the gradient will be computed over batches of training instances rather than a single instance
- Batch training: Gradient is computed over the entire dataset
 - Perfect direction, but very computationally expensive
- Mini-batch training: Gradient is computed over a group of *m* examples

Mini-Batch Versions of Cross-Entropy Loss and Gradient

- Cross-Entropy Loss:
 - L_{CE} (training samples) = $-\sum_{i=1}^{m} L_{CE}(\hat{y}^{(i)}, y^{(i)})$
- Gradient:

$$\bullet \frac{d\theta}{dw_j} = \frac{1}{m} \sum_{i=1}^m \left[\sigma \left(w \cdot x^{(i)} + b \right) - y^{(i)} \right] x_j^{(i)}$$

Regularization

- To avoid **overfitting**, regularization terms $(R(\theta))$ are usually added to the loss function
- These terms are used to penalize large weights (which can hinder a model's ability to generalize)
- Two common regularization terms:
 - L2 regularization
 - L1 regularization

L2 Regularization

- Quadratic function of the weight values
- Square of the L2 norm (Euclidean distance of θ from the origin)
 - $R(\theta) = \|\theta\|_2^2 = \sum_{j=1}^n \theta_j^2$

• • • • • • • • • •

L1 Regularization

- Linear function of the weight values
- Sum of the absolute values of the weights (Manhattan distance from the origin)
 - $R(\theta) = \|\theta\|_1 = \sum_{i=1}^n |\theta_i|$

Which regularization term is better?

- L2 regularization is easier to optimize (simpler derivative)
- L2 regularization \rightarrow weight vectors with many small weights
- L1 regularization \rightarrow sparse weight vectors with some larger weights

Multinomial Logistic Regression

- Other names:
 - Softmax regression
 - Maxent classification
- Uses a softmax function rather than a sigmoid function
- Softmax takes a vector z of arbitrary values (same as the sigmoid function) and maps them to a probability distribution summing to 1
 - softmax $(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{|\mathbf{Z}|} e^{z_j}}$

Interpreting Models

- What if we want to know more than just the correct classification?
 - Why did the classifier make the decision it made?
- In these cases, we can say we want our model to be interpretable
- We can interpret logistic regression models by determining how much weight is associated with a given feature

This is a key advantage of logistic regression over neural models.

- Manually-defined features facilitate interpretability
- Implicitly-learned features can be very difficult to interpret!
- Because of this, some researchers may choose to use logistic regression rather than neural models if they are particularly interested in which factors are influencing the model's decisions
 - Common example: Healthcare applications
- This allows logistic regression to function not only as a simple classification model, but as a powerful analytic tool

Summary: Logistic Regression

- Logistic regression is a discriminative classification model used for supervised machine learning
- It is characterized by four key components:
 - Feature representation
 - Classification function
 - Loss function
 - Optimization function
- Classification decisions are made using a **sigmoid** function for binary logistic regression, or a **softmax** function for multinomial logistic regression
- Loss is typically computed using a cross-entropy function
- · Weights are usually optimized using stochastic gradient descent
- · A regularization term may be added to the loss function to avoid overfitting
- In addition to serving as a simple classifier and a useful foundation for neural networks, logistic regression can function as a powerful analytic tool