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What is 
logistic 

regression?

• Fundamental supervised machine 
learning algorithm

• Used for text classification
• Very close relationship with neural 

networks!
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Did someone 
say “neural 
networks”? 

🤓🤩

• Coming up in a couple weeks! 😉
• One way to view feedforward neural 

networks is as a series of logistic 
regression classifiers stacked on top of 
one another
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Logistic regression can be used for binary 
classification or multinomial classification.

• Binary
• Class A vs. Class B

• Multinomial
• Class A vs. Class B vs. Class C vs. Class 

D….

vs.

vs. vs. vs.
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Logistic regression can be used for binary 
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How does 
logistic 
regression 
differ from 
naïve 
Bayes?

• Generative classifier

Naïve Bayes

• Discriminative classifier

Logistic Regression

Not sure what naïve Bayes is?  Check out the course slides from CS 421: 
http://www.natalieparde.com/teaching/cs_421_fall2019/Naive%20Bayes,%
20Text%20Classification,%20and%20Evaluation%20Metrics.pdf
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Generative Classifiers
• Goal: Understand what each class 

looks like
• Should be able to “generate” an 

instance from each class
• To classify an instance, determines 

which class model better fits the 
instance, and chooses that as the 
label

I’m just thrilled that I have five 
final exams on the same day. 🙄

Sarcasm Not Sarcasm
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Discriminative Classifiers
• Goal: Learn to distinguish between 

two classes
• No need to learn that much 

about them individually
• To classify an instance, determines 

whether the distinguishing 
feature(s) between classes is 
present

I’m just thrilled that I have five 
final exams on the same day. 🙄

Contains 
🙄?

Sarcasm
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
)∈+

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
)∈+

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior

A generative model like naïve Bayes makes use of the likelihood term
• Likelihood: Expresses how to generate an instance if it knows it is of class c
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More formally….
• Recall the definition of naïve Bayes:

• 𝑐̂ = argmax
)∈+

𝑃 𝑑 𝑐 𝑃(𝑐)

Likelihood Prior

A discriminative model instead tries to compute P(c|d) directly!

𝑐̂ = argmax
)∈+

𝑃(𝑐|𝑑)

1/23/20 Natalie Parde - UIC CS 521 11



However, 
naïve Bayes 
and logistic 
regression 
also have 
some 
similarities.

Both are probabilistic 
classifiers

Both perform supervised 
machine learning
• Supervised machine learning: Machine 

learning with labeled training and test data
• Generally formalized as xs (instances) 

and ys (labels), where an individual 
instance is an x(i), y(i) pair
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Which is better …naïve Bayes or 
logistic regression?

• Depends on the task and the dataset
• For larger datasets, logistic regression is usually better
• For smaller datasets, naïve Bayes is sometimes better
• Naïve Bayes is easy to implement and faster to train
• Best to experiment with multiple classification models to determine 

which is best for your needs
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In general, 
supervised 

machine 
learning 

systems for text 
classification 

have four main 
components.

• Feature representation of the input
• Typically, a vector of features [x1

(j), x2
(j), …, xn

(j)] 
for a given instance x(j)

• Classification function that computes the 
estimated class, 1𝑦

• Sigmoid
• Softmax
• Etc.

• Objective function or loss function that computes 
error values on training instances

• Cross-entropy loss function
• Optimization function that seeks to minimize the 

loss function
• Stochastic gradient descent
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Likewise, 
supervised 

machine 
learning 
systems 

generally 
have two 
phases.

• Training
• For logistic regression, you train 

weights w and a bias b using 
stochastic gradient descent and 
cross-entropy loss

• Test
• Using your trained model, you compute 

P(y|x) and return the highest probability 
label
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Classifier 
Building 

Blocks: The 
Sigmoid

• Goal of binary logistic regression:
• Train a classifier that can decide whether a 

new input observation belongs to class a or 
class b

• To do this, the classifier learns a vector of 
weights (one associated with each input 
feature) and a bias term

• A given weight indicates how important its 
corresponding feature is to the overall 
classification decision

• Can be positive or negative
• The bias term is a real number that is added 

to the weighted inputs
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Classifier 
Building 

Blocks: The 
Sigmoid

• To make a classification decision, the classifier: 
• Multiplies each feature for an input instance x by its 

corresponding weight (learned from the training data)
• Sums the weighted features
• Adds the bias term b

• This results in a weighted sum of evidence for 
the class:

• 𝑧 = 𝑏 + ∑7 𝑤7𝑥7

Bias term Weight for feature i Feature i for instance x
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Vector Notation
• Letting 𝑤 be the weight vector and 𝑥 be the input feature vector, 

we can also represent the weighted sum 𝑧 using vector 
notation:

• 𝑧 = 𝒘 ; 𝒙 + 𝑏

Bias termVector of all weights

Vector of all features for x
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However, 
this still 

computes a 
linear 

function of 
x!

• What we really want is a probability
ranging from 0 to 1

• To do this, we pass z through the sigmoid 
function, 𝜎(𝑧)

• Also called the logistic function, hence 
the name logistic regression

1/23/20 Natalie Parde - UIC CS 521 19



Sigmoid Function

• Sigmoid Function:
• 𝜎 𝑥 = >

>?@AB

• Given its name because 
when plotted, it looks like an s

• Results in a value y ranging 
from 0 to 1

• 𝑦 = 𝜎 𝑧 = >
>?@AC

= >
>?@AD;BEF
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There are many useful properties of the 
sigmoid function!

• Maps a real-valued number to a 0 to 1 range
• Just what we need for a probability….

• Squashes outlier values towards 0 or 1
• Differentiable

• Necessary for learning….
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How do we convert the sigmoid 
output to a real probability?

• Just make all the cases sum to 1
• 𝑃(𝑦 = 1) = 𝜎 𝑧
• 𝑃 𝑦 = 0 = 1 − 𝜎 𝑧
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How do we make a 
classification decision?

• Choose a decision boundary
• For binary classification, often 0.5

• For a test instance x, assign a label c if 𝑃(𝑦 = 𝑐|𝑥) is greater than the decision 
boundary

• If performing binary classification, assign the other label if 𝑃(𝑦 = 𝑐|𝑥) is lower 
than or equal to the decision boundary

1/23/20 Natalie Parde - UIC CS 521 23



Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature
Contains 🙄
Contains 😊
Contains “I’m”
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight
Contains 🙄 2.5
Contains 😊 -3.0
Contains “I’m” 0.5
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight
Contains 🙄 2.5
Contains 😊 -3.0
Contains “I’m” 0.5

Positively associated with sarcasm

Negatively associated with sarcasm
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains 
“I’m”

0.5 1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains 
“I’m”

0.5 1

Bias = 0.1
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains 
“I’m”

0.5 1

𝑧 = 𝑏 + J
7

𝑤7𝑥7

Bias = 0.1

𝑦 = 𝜎 𝑧 = >
>?@AC
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains 
“I’m”

0.5 1

𝑧 = 𝑏 + J
7

𝑤7𝑥7

𝑦 = 𝜎 𝑧 = >
>?@AC

Bias = 0.1

𝑃 sarcasm 𝑥 = 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 𝜎 0.1 + 3.0 = 𝜎 3.1 =
1

1 + 𝑒ST.> = 0.96
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains 
“I’m”

0.5 1

𝑧 = 𝑏 + J
7

𝑤7𝑥7

𝑦 = 𝜎 𝑧 = >
>?@AC

Bias = 0.1

𝑃 sarcasm 𝑥 = 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 𝜎 0.1 + 3.0 = 𝜎 3.1 =
1

1 + 𝑒ST.> = 0.96

𝑃 not sarcasm 𝑥 = 1 − 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 1 − 𝜎 0.1 + 3.0 = 1 − 𝜎 3.1 = 1 −
1

1 + 𝑒ST.>
= 1 − 0.96 = 0.04
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Example: Sigmoid Classification
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic or not sarcastic?

Feature Weight Value
Contains 🙄 2.5 1
Contains 😊 -3.0 0
Contains 
“I’m”

0.5 1

𝑧 = 𝑏 + J
7

𝑤7𝑥7

𝑦 = 𝜎 𝑧 = >
>?@AC

Bias = 0.1

𝑃 sarcasm 𝑥 = 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 𝜎 0.1 + 3.0 = 𝜎 3.1 =
1

1 + 𝑒ST.> = 0.96

𝑃 not sarcasm 𝑥 = 1 − 𝜎 0.1 + 2.5 ∗ 1 + −3.0 ∗ 0 + 0.5 ∗ 1 = 1 − 𝜎 0.1 + 3.0 = 1 − 𝜎 3.1 = 1 −
1

1 + 𝑒ST.>
= 1 − 0.96 = 0.04
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A little bit about features….

• Anything can be a feature!
• Specific words or n-grams
• Information from external lexicons
• Grammatical elements
• Part-of-speech tags

• In neural classification models, the feature vector often includes word embeddings
• More about these next week!
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Learning in Logistic Regression

• How are the parameters of a logistic regression model, w and 
b, learned?

• Loss function
• Optimization function

• Goal: Learn parameters that make 1𝑦 for each training 
observation as close as possible to the true 𝑦
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Loss Function

• We need to determine the distance between the 
predicted and true output value

• How much does 1𝑦 differ from 𝑦?
• We do this using a conditional maximum likelihood 

estimation
• Select w and b such that they maximize the log 

probability of the true y values in the training data, 
given their observations x

• This results in a negative log likelihood loss
• More commonly referred to as cross-entropy loss
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Cross-Entropy Loss
• Most common loss function for many classification tasks

• Measures the distance between the probability distributions of predicted and 
actual values

• 𝑙𝑜𝑠𝑠 𝑦7, _𝑦7 = −∑)`>
+ 𝑝7,) log c𝑝7,)

• C is the set of all possible classes
• 𝑝7,) is the actual probability that instance i should be labeled with 

class c
• c𝑝7,) is the predicted probability that instance i should be labeled with 

class c

• Ranges from 0 (best) to 1 (worst)
• Observations with a big distance between the predicted and actual values 

have much higher cross-entropy loss than observations with only a small 
distance between the two values
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Example: Cross-Entropy Loss

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.7 0.3 1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.7 0.3 1 0

𝑙𝑜𝑠𝑠 𝑦7, 𝑦7′ = −J
)`>

+

𝑝7,) log c𝑝7,) = −𝑝7,efg)feh7) log i𝑝7,efg)feh7) − 𝑝7,jkh efg)feh7) log i𝑝7,jkh efg)feh7)

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.7 0.3 1 0

𝑙𝑜𝑠𝑠 𝑦7, 𝑦7′ = −J
)`>

+

𝑝7,) log c𝑝7,) = −𝑝7,efg)feh7) log i𝑝7,efg)feh7) − 𝑝7,jkh efg)feh7) log i𝑝7,jkh efg)feh7)

𝑙𝑜𝑠𝑠 𝑦7, 𝑦7′ = −1 ∗ log 0.7 − 0 ∗ log 0.3

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.7 0.3 1 0

𝑙𝑜𝑠𝑠 𝑦7, 𝑦7′ = −J
)`>

+

𝑝7,) log c𝑝7,) = −𝑝7,efg)feh7) log i𝑝7,efg)feh7) − 𝑝7,jkh efg)feh7) log i𝑝7,jkh efg)feh7)

𝑙𝑜𝑠𝑠 𝑦7, 𝑦7′ = −1 ∗ log 0.7 − 0 ∗ log 0.3 = − log 0.7 = 0.15

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

1 0

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄

What if our predicted values were switched?
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Example: Cross-Entropy Loss

Instance
Predicted 

Probability: 
Sarcastic

Predicted 
Probability: Not 

Sarcastic

Actual 
Probability: 
Sarcastic

Actual 
Probability: Not 

Sarcastic
I’m just thrilled that 
I have five final 
exams on the 
same day. 🙄

0.3 0.7 1 0

𝑙𝑜𝑠𝑠 𝑦7, 𝑦7′ = −J
)`>

+

𝑝7,) log c𝑝7,) = −𝑝7,efg)feh7) log i𝑝7,efg)feh7) − 𝑝7,jkh efg)feh7) log i𝑝7,jkh efg)feh7)

𝑙𝑜𝑠𝑠 𝑦7, 𝑦7′ = −1 ∗ log 0.3 − 0 ∗ log 0.7 = − log 0.3 = 0.52

Sarcastic Not Sarcastic
I’m just thrilled that I have five 
final exams on the same day. 🙄

Greater loss value!
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Why does minimizing the 
negative log probability work?

• Perfect binary classifier:
• Assign probability of 1.0 to the correct class
• Assign probability of 0.0 to the incorrect class

• Thus, higher 1𝑦 is better
• Correspondingly, negative log of 1.0 → no loss (− log 1.0 = 0); negative log of 

0.0 → infinite loss (− log 0.0 = ∞)
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Finding Optimal Weights

• Goal: Minimize the loss function defined for the model
• n𝜃 = argmin

q

>
r
∑7`>r 𝐿+t(𝑦 7 , 𝑥 7 ; 𝜃)

• For logistic regression, 𝜃 = 𝑤, 𝑏
• One way to do this is by using gradient descent
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?

Negative slope
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi

Should I move 
right or left?

Negative slope

Move in positive direction
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Gradient Descent
• Finds the minimum of a function by:

• Figuring out the direction (in the space 
of 𝜃) the function’s slope

• Moving in the opposite direction
• For logistic regression, loss functions 

are convex
• Only one minimum
• Gradient descent starting at any point is 

guaranteed to find it

weight

loss

wi+1

Okay!
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Gradient Descent
• How much do we move?

• Value of the slope
• v
vw
𝑓(𝑥;𝑤)

• Weighted by a learning rate 𝜂
• Faster learning rate → move w more 

on each step
• So, the change to a weight at time t 

is actually:
• 𝑤h?> = 𝑤h − 𝜂 v

vw 𝑓(𝑥;𝑤)

weight

loss

wt+1
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Remember, in actual logistic regression, 
there are weights for each feature.

• The gradient is then a vector of the slopes of each dimension:

• ∇q𝐿 𝑓 𝑥; 𝜃 , 𝑦 =

v
vw{

𝐿(𝑓 𝑥; 𝜃 , 𝑦)
…

v
vw}

𝐿(𝑓 𝑥; 𝜃 , 𝑦)

• This in turn means that the final equation for updating 𝜃 is:
• 𝜃h?> = 𝜃h − 𝜂∇𝐿(𝑓 𝑥; 𝜃 , 𝑦)
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The Gradient for Logistic 
Regression

• Recall our cross-entropy loss function:
• 𝑙𝑜𝑠𝑠 𝑦7, _𝑦7 = −∑)`>

+ 𝑦 log 1𝑦 = −∑)`>
+ 𝑦 log 𝜎(𝒘 ; 𝒙 + 𝑏)

• The derivative for this function is:
• v~��(w,�)

vw�
= 𝜎 𝒘 ; 𝒙 + 𝑏 − 𝑦 𝑥�

Difference between true and estimated y Corresponding input observation
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Stochastic Gradient Descent 
Algorithm

𝜃←0  # initialize weights to 0
repeat until convergence:

For each training instance (𝑥(7), 𝑦(7)) in random order:
g ← ∇q𝐿 𝑓 𝑥(7); 𝜃 , 𝑦(7) # change to 𝜃 to maximize loss
𝜃 ← 𝜃 − 𝜂g  # go the other way instead

return 𝜃
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Example: Gradient Descent (Single Step)
I’m just thrilled that I have five 
final exams on the same day. 🙄 Sarcastic

Feature Weight Value
Contains 🙄 0 1
Contains 😊 0 0
Contains 
“I’m”

0 1
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Bias (b) = 0
Learning rate (𝜂) = 0.1

𝜃h?> = 𝜃h − 𝜂∇q𝐿 𝑓 𝑥(7); 𝜃 , 𝑦(7)
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Mini-Batch Training

• Stochastic gradient descent chooses a single random example at a time …this can 
result in choppy movements!

• Often, the gradient will be computed over batches of training instances rather than a 
single instance

• Batch training: Gradient is computed over the entire dataset
• Perfect direction, but very computationally expensive

• Mini-batch training: Gradient is computed over a group of m examples
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Mini-Batch Versions of Cross-
Entropy Loss and Gradient

• Cross-Entropy Loss:
• 𝐿+t training samples = −∑7`>r 𝐿+t( 1𝑦 7 , 𝑦(7))

• Gradient:
• vq
vw�

= >
r
∑7`>r 𝜎 𝑤 ; 𝑥 7 + 𝑏 − 𝑦(7) 𝑥�

(7)
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Regularization

• To avoid overfitting, regularization terms (𝑅(𝜃)) are usually added to the loss 
function

• These terms are used to penalize large weights (which can hinder a model’s 
ability to generalize)

• Two common regularization terms:
• L2 regularization
• L1 regularization
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L2 Regularization

• Quadratic function of the weight values
• Square of the L2 norm (Euclidean distance of 𝜃 from the origin)

• 𝑅 𝜃 = 𝜃 �
� = ∑�`>j 𝜃��

1/23/20 Natalie Parde - UIC CS 521 64



L1 Regularization

• Linear function of the weight values
• Sum of the absolute values of the weights (Manhattan distance from the 

origin)
• 𝑅 𝜃 = 𝜃 > = ∑7`>j 𝜃7
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Which regularization 
term is better?

• L2 regularization is easier to optimize (simpler derivative)
• L2 regularization → weight vectors with many small weights
• L1 regularization → sparse weight vectors with some larger 

weights
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Multinomial Logistic 
Regression

• Other names:
• Softmax regression
• Maxent classification

• Uses a softmax function rather than a sigmoid function
• Softmax takes a vector z of arbitrary values (same as the sigmoid function) and 

maps them to a probability distribution summing to 1
• softmax 𝑧7 = @C�

∑��{
|z| @C�
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Interpreting 
Models

• What if we want to know more than just the correct classification?
• Why did the classifier make the decision it made?

• In these cases, we can say we want our model to be interpretable
• We can interpret logistic regression models by determining how much weight is 

associated with a given feature
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This is a key advantage of logistic 
regression over neural models.

• Manually-defined features facilitate interpretability
• Implicitly-learned features can be very difficult to interpret!
• Because of this, some researchers may choose to use logistic regression rather than 

neural models if they are particularly interested in which factors are influencing the 
model’s decisions

• Common example: Healthcare applications
• This allows logistic regression to function not only as a simple classification model, but 

as a powerful analytic tool

1/23/20 Natalie Parde - UIC CS 521 69



Summary: Logistic Regression
• Logistic regression is a discriminative classification model used for supervised machine learning
• It is characterized by four key components:

• Feature representation
• Classification function
• Loss function
• Optimization function

• Classification decisions are made using a sigmoid function for binary logistic regression, or a softmax function for multinomial logistic 
regression

• Loss is typically computed using a cross-entropy function
• Weights are usually optimized using stochastic gradient descent
• A regularization term may be added to the loss function to avoid overfitting
• In addition to serving as a simple classifier and a useful foundation for neural networks, logistic regression can function as a 

powerful analytic tool
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