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Logistic Regression



https://web.stanford.edu/~jurafsky/slp3/

n  Fundamental supervised machine
What IS learning algorithm

|Og iStiC « Used for text classification

-  Very close relationship with neural
regression? iy

1/23/20 Natalie Parde - UIC CS 521



D|d someone « Coming up in a couple weeks! &

cc * One way to view feedforward neural
Say neural networks is as a series of logistic

networks”? regression classifiers stacked on top of

one another

W
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Logistic regression can be used for binary
classification or multinomial classification.

* Binary
e ClassAvs. Class B

 Multinomial

 Class Avs. Class B vs. Class C vs. Class
D....



Logistic regression can be used for binary
classification or multinomial classification.

e ClassAvs. Class B

 Class Avs. Class B vs. Class C vs. Class
D....



NENWCREWEE

How does
Iogistic « Generative classifier

regression

differ from Logistic Regression
nhaive
Bayes’? - Discriminative classifier

Not sure what naive Bayes is? Check out the course slides from CS 421:
http://www.natalieparde.com/teaching/cs 421 fall2019/Naive%20Bayes,%
20Text%20Classification,%20and%20Evaluation%20Metrics.pdf
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http://www.natalieparde.com/teaching/cs_421_fall2019/Naive%2520Bayes,%2520Text%2520Classification,%2520and%2520Evaluation%2520Metrics.pdf

Generative Classifiers

.

« Goal: Understand what each class I'm just thrilled that | have five
looks like final exams on the same day. @

« Should be able to “generate” an
instance from each class

 To classify an instance, determines Sarcasm Not Sarcasm
which class model better fits the
instance, and chooses that as the f?
label O
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Discriminative Classifiers

[«

* Goal: Learn to distinguish between I'm just thrilled that | have five
two classes final exams on the same day. @ \‘
* No need to learn that much -’

-
- -
—_-_—-——-—-_
——

about them individually

 To classify an instance, determines 7
whether the distinguishing \ ‘
feature(s) between classes is {CLCLY I~~~ > Sarcasm
present

1/23/20
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More formally....

« Recall the definition of naive Bayes:
e ¢ = argmax P(d|c)P(c)

7
ﬁx }

Likelihood Prior
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More formally....

« Recall the definition of naive Bayes:
e ¢ = argmax P(d|c)P(c)

’
ﬁ/ ‘

Likelihood Prior

A generative model like naive Bayes makes use of the likelihood term
« Likelihood: Expresses how to generate an instance if it knows it is of class ¢
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More formally....

« Recall the definition of naive Bayes:

_________ > Grgmax P(c|d)
cec

A discriminative model instead tries to compute P(c|d) directly!
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However,
naive Bayes
and logistic

regression
also have
some
similarities.

1/23/20

Both are probabilistic
classifiers

Both perform supervised
machine learning

« Supervised machine learning: Machine
learning with labeled training and test data

* Generally formalized as xs (instances)
and ys (labels), where an individual
instance is an x®, yi) pair
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Which is better ...naive Bayes or
logistic regression?

* Depends on the task and the dataset

* For larger datasets, logistic regression is usually better
* For smaller datasets, naive Bayes is sometimes better
* Nailve Bayes is easy to implement and faster to train

- Best to experiment with multiple classification models to determine
which is best for your needs



Feature representation of the input
« Typically, a vector of features [x,0, x,0, ..., x,0]

In general, for a given instance x0/
supervised  Classification function that computes the
hi estimated class, y
machine . Sigmoid
learning + Softmax
systems for text o =te. f f
4 : * Objective function or loss function that computes
CIaSSIflcathn error values on training instances
have four main  Cross-entropy loss function
components_ « Optimization function that seeks to minimize the

loss function
« Stochastic gradient descent
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Likewise,
supervised
machine
learning

systems
generally
have two
phases.

1/23/20

* Training
* For logistic regression, you train
weights w and a bias b using

stochastic gradient descent and
cross-entropy loss

e Test

» Using your trained model, you compute
P(y|x) and return the highest probability
label
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Classifier
Building

Blocks: The
Sigmoid

1/23/20

» Goal of binary logistic regression:

 Train a classifier that can decide whether a
new input observation belongs to class a or
class b

* To do this, the classifier learns a vector of

weights (one associated with each input
feature) and a bias term

« A given weight indicates how important its
corresponding feature is to the overall
classification decision

« Can be positive or negative

 The bias term is a real number that is added
to the weighted inputs
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* To make a classification decision, the classifier:
« Multiplies each feature for an input instance x by its

C I ass ifi e r corresponding weight (learned from the training data)

« Sums the weighted features

BUiIding « Adds the bias term b

* This results in a weighted sum of evidence for

B|OCkS: The the class:

e 7 =0 + Ziwixiv.N

Sigmoid R T

\

\
i

Bias term Weight for feature i Feature j for instance x
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> Vector Notation

* Letting w be the weight vector and x be the input feature vector,
we can also represent the weighted sum z using vector
notation:

°Z=w-x+bv

HE N
I \ \
I \\ \\
H \ S,
Vector of all weights | 3, Bias term
\
—

Vector of all features for x
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However,
this still
computes a
linear
function of
X!

1/23/20

* What we really want is a probability
ranging from O to 1

 To do this, we pass z through the sigmoid
function, o(2)

 Also called the logistic function, hence

the name logistic regression

Natalie Parde - UIC CS 521
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Sigmoid Function

2 4

nNe

8

T e Bl The sigmoid function y = —L.— takes a real value and maps it to the range [0, 1].

l+4e—2

It is nearly linear around O but outlier values get squashed toward O or 1.

1/23/20
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« Sigmoid Function:
1
1+e~*

e o(x) =

« Given its name because
when plotted, it looks like an s

« Results in a value y ranging
from O to 1
1 1

*y=o0()= 1te-7  14e-wx+th
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There are many useful properties of the
sigmoid function!

* Maps a real-valued number to a 0 to 1 range
 Just what we need for a probability....

« Squashes outlier values towards 0 or 1

* Differentiable
* Necessary for learning....



How do we convert the sigmoid
output to a real probability?

e Just make all the cases sum to 1

*P(y=1) = a(z)
*P(y=0)=1-0(2)
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How do we make a
classification decision?

* Choose a decision boundary
 For binary classification, often 0.5

» For a test instance x, assign a label c if P(y = c|x) is greater than the decision
boundary

* If performing binary classification, assign the other label if P(y = c|x) is lower
than or equal to the decision boundary
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Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

1/23/20 Natalie Parde - UIC CS 521
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Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Contains @
Contains @

Contains “I'm”



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Contains 2.5
Contains @& -3.0

Contains “I'm” 0.5



Example: Sigmoid Classification

.

'm just thrilled that | have five | |
final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Contains @ 25 A=mmmmmmem——a- < Positively associated with sarcasm
I
Contains @ 3.0 E=mm———m—ea ] N | 4 with
—————T egatively associated with sarcasm
Contains “I'm” 0.5 ®===77 < y



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Feature | Weight __| Value

Contains ¢ 2.5 1
Contains @ -3.0 0
Contains 0.5 1

“I’m”



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains ¢ 2.5 1
Contains @ -3.0 0
Contains 0.5 1

“I’m”



Example: Sigmoid Classification

.

J 'm just thrilled that | have five

final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains ¢ 2.5 1

Z=D> + Z W; X
Contains @ -3.0 0 ;
Contains 0.5 1 y = 0(z) =—

“I’m” 1+€_Z



Example: Sigmoid Classification

.

'm just thrilled that | have five | |
final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains ¢ 2.5 1

Z=Db + Z W; X
Contains @ -3.0 0 ;
Contains 0.5 1 _ __1
“I’m” y — O-(Z) - 1+€_Z

P(sarcasm|x) = ¢(0.1+ (25%1+4(=3.0)*0+ 0.5x1)) = ¢(0.1+3.0) = ¢(3.1) =

— =096



Example: Sigmoid Classification

.

'm just thrilled that | have five | |
final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains ¢ 2.5 1

Z=Db + Z W; X
Contains @ -3.0 0 ;
Contains 0.5 1 _ __1
“I’m” y — O-(Z) - 1+€_Z

P(sarcasm|x) = ¢(0.14+ (25% 1+ (-=3.0)x0+0.5%1)) = 0(0.1+3.0) = ¢(3.1) = = 0.96

1+e31

1
————=1-1096=0.04

P(notsarcasm|x) =1 — 0(0.1+ (251 +(=3.0)x0+05%1))=1-0(01+3.0)=1—- 631 =1—- o



Example: Sigmoid Classification

.

'm just thrilled that | have five | |
final exams on the same day. & | €~~~ 7777° Sarcastic or not sarcastic?

Feature | Weight | Value SR

Contains ¢ 2.5 1

Z=Db + Z W; X
Contains @ -3.0 0 ;
Contains 0.5 1 _ __1
“I’m” y — O-(Z) - 1+€_Z

1
P(sarcasm|x) = ¢(0.1+ (25%1+4(=3.0)*0+ 0.5x1)) = ¢(0.1+3.0) = ¢(3.1) = i o1 0.96 *

1
————=1-1096=0.04

P(notsarcasm|x) =1 — 0(0.1+ (251 +(=3.0)x0+05%1))=1-0(01+3.0)=1—- 631 =1—- o



A little bit about features....

* Anything can be a feature!
« Specific words or n-grams
 |Information from external lexicons
« Grammatical elements
 Part-of-speech tags
* |In neural classification models, the feature vector often includes word embeddings
« More about these next week!



Learning in Logistic Regression

* How are the parameters of a logistic regression model, w and
b, learned?

* Loss function
* Optimization function

» Goal: Learn parameters that make y for each training
observation as close as possible to the true y
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Loss Function

 We need to determine the distance between the
predicted and true output value

* How much does y differ from y?
* We do this using a conditional maximum likelihood
estimation

« Select w and b such that they maximize the log
probability of the true y values in the training data,
given their observations x

» This results in a negative log likelihood loss
* More commonly referred to as cross-entropy loss

4
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Cross-Entropy Loss

Most common loss function for many classification tasks

» Measures the distance between the probability distributions of predicted and
actual values

o loss(y;,77) = — 2 pi . logpie
« Cis the set of all possible classes
* p; . is the actual probability that instance / should be labeled with
class ¢

* p; . is the predicted probability that instance / should be labeled with
class c

» Ranges from 0 (best) to 1 (worst)

» Observations with a big distance between the predicted and actual values
have much higher cross-entropy loss than observations with only a small
distance between the two values
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Example: Cross-Entropy Loss

.

J 'm just thrilled that | have five

final exams on the same day. @

1/23/20
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Not Sarcastic
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Example: Cross-Entropy Loss

.

J 'm just thrilled that | have five

final exams on the same day. @ Not Sarcastic

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that
| have five final

exams on the
same day. @



Example: Cross-Entropy Loss

.

J 'm just thrilled that | have five

final exams on the same day. @ Not Sarcastic

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that
| have five final

exams on the
same day. @

0.7 0.3 1 0



Example: Cross-Entropy Loss

.

J 'm just thrilled that | have five

Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that
| have five final 0.7 03 1 0

exams on the
same day. @

IC|
loss( . .’) e . 10 . — —1). , 10 . . — M. . lo . - ,
yl’ yl pl,C g pl,C pl,SaT'CClSth g pl,SaT'CClSth pl,'not sarcastic g pl,not sarcastic

c=1



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that

| have five final
exams on the 0.7 0.3 1 0
same day. @

|C|

! _ — —_— —
loss (yi» Yi ) - z pi,c log pi,c — _pi,sarcastic log pi,sarcastic _ pi,not sarcastic log pi,not sarcastic

c=1

loss(y;,v;') = —1x10g 0.7 — 0 xlog 0.3



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that

| have five final
exams on the 0.7 0.3 1 0
same day. @

|C|

! _ — —_— —
loss (yi» Yi ) - z pi,c log pi,c — _pi,sarcastic log pi,sarcastic _ pi,not sarcastic log pi,not sarcastic

c=1

loss(y;,y;')) = —1x10g0.7 — 0 x1log 0.3 = —log 0.7 = 0.15



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not

Sarcastic

Sarcastic Sarcastic Sarcastic

I’'m just thrilled that

| have five final 1 0
exams on the

same day. @

What if our predicted values were switched?



Example: Cross-Entropy Loss

.

'm just thrilled that | have five _
Not Sarcastic

final exams on the same day. @

Predicted Predicted Actual Actual

Probability: Probability: Not Probability: Probability: Not
Sarcastic Sarcastic Sarcastic Sarcastic

I’'m just thrilled that
| have five final
exams on the 0.3 0.7 1 0
same day. @
IC|
loss (yi; yi’) = = z pi,c log ﬁl\c — _pi,sarcastic log pi,s;c\astic _ pi,not sarcastic log pi,not/s\arcastic

c=1

loss(y;,v;') = —1x10og0.3 — 0 *log0.7 = —log 0.3 = 0.52 \
Greater loss value!




Why does minimizing the
negative log probability work?

 Perfect binary classifier:
 Assign probability of 1.0 to the correct class
 Assign probability of 0.0 to the incorrect class

* Thus, higher y is better

« Correspondingly, negative log of 1.0 — no loss (—1log 1.0 = 0); negative log of
0.0 — infinite loss (—log 0.0 = o)



Finding Optimal Weights

 Goal: Minimize the loss function defined for the model
0 =argmin 23, Lep (0,203 )

 For logistic regression, 8 = w, b
* One way to do this is by using gradient descent

1/23/20 Natalie Parde - UIC CS 521
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Gradient Descent

* Finds the minimum of a function by:
 Figuring out the direction (in the space )’tsmmd | move

of 8) the function’s slope right or left?

« Moving in the opposite direction loss

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

weight

1/23/20 Natalie Parde - UIC CS 521 48



Gradient Descent

* Finds the minimum of a function by:

 Figuring out the direction (in the space
of 8) the function’s slope

« Moving in the opposite direction loss

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

Should | move
right or left?

Negative slope

weight
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Gradient Descent

* Finds the minimum of a function by:

 Figuring out the direction (in the space
of 8) the function’s slope

« Moving in the opposite direction loss

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

Should | move
right or left?

weight
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Gradient Descent

* Finds the minimum of a function by:

 Figuring out the direction (in the space
of 8) the function’s slope

« Moving in the opposite direction loss

 For logistic regression, loss functions
are convex
* Only one minimum

» Gradient descent starting at any point is
guaranteed to find it

weight
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Gradient Descent

 How much do we move?
 Value of the slope
* W)

» Weighted by a learning rate n

 Faster learning rate — move w more
on each step

* S0, the change to a weight at time t

Is actually:

o vot+l — ot 4 oo
w w ndwf(x,w) v

loss

weight
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Remember, in actual logistic regression,
there are weights for each feature.

* The gradient is then a vector of the slopes of each dimension:
B !
2w LU (x6),5)

S L(f(x:0),)

* This in turn means that the final equation for updating 6 is:
* 0r11 =0 —nVL(f(x;0),y)

° VgL(f(X; 9)))’) —




The Gradient for Logistic
Regression

« Recall our cross-entropy loss function:
+ loss(y, ) = —Xor, ylogy = — Xi- ylogo(w - x + b)
* The derivative for this function is:

o dLcEWb) _ l[oc(w-x+ D) —ylx;

Difference between true and estimated y Corresponding input observation

1/23/20 Natalie Parde - UIC CS 521
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Stochastic Gradient Descent
Algorithm

0—0 # initialize weights to 0
repeat until convergence:
For each training instance (x®, y®) in random order:
g« VoL(f(x®;6),yV) # change to 6§ to maximize loss
0 «— 6 —ng # go the other way instead
return 6



Example: Gradient Descent (Single Step)

.

J 'm just thrilled that | have five

final exams on the same day. @ | 77777 777" Sarcastic

Feature | Weight __| Value

Contains & 0 1
Contains @ 0 0
Contains 0 1

“I’m”



Example: Gradient Descent (Single Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | ©~77"7"77" Sarcastic

mm Bias (b) = 0

Contains ¢ Learning rate (n) = 0.1

Contains & . .
| 0 0 9t+1 _ Ht . UVQL(f(X(l); 0),y(l))

Contains 0 1

“I’m”



Example: Gradient Descent (Single Step)

)

'm just thrilled that | have five
final exams on the same day. @

mm Value

Contains @

Contains @ 0
Contains 0
“I’m”

VgL(f(x(i); g)’y(i)) =

_dLCE (W: b)_

dw;
dLcr(w,b)
dw,
dLcr(w,b)
dws
dLcr(w,b)
db

=1

(c(w-x+b)
(c(w-x+b)
(c(w-x+b)

—¥Y)x;
— ¥)x;
— ¥)X3

ow-x+b)—y

B

ias (b) =

0
Learning rate (n) =

Sarcastic

0.1

9t+1 — Ht _ TIVQL(f(X(l), 0),)}(1))

Y

(0(0) — Dx;

(0(0) — Dx,

(0(0) — 1)x3
o(0)—1

X

0.5 — 1)x,
0.5 — 1)x,
(0.5 — 1)x;
0.5 — 1)

i

—0.5=%1

—0.5%0

—0.5=%1
—-0.5

i

—0.5

0
—0.5

—0.5

|



Example: Gradient Descent (Single Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | ©~77"7"77" Sarcastic

mm Bias (b) = 0

Contains ¢ Learning rate (n) = 0.1

Contains & . .

| 0 0 9t+1 _ Ht . UVQL(f(X(l); 0),y(l))
Contains 0 1
“I’m”

—0.5
natresn)=[ 1]
—0.5

0 —0.5 —0.5 —0.05 0.05

t+1 _ gt _ OF Y — |0
6 6t —nVoL(f(x";6),y®) lo] l_o 5] l —0. 5] l ] l—o OS] lO 05]
0 —0.5 —0.5 —0.05 0.05

o OO O
oS OO O



Example: Gradient Descent (Single Step)

[Tm just thrilled that | have five |
final exams on the same day. @ | ©~77"7"77" Sarcastic

mm Bias (b) = 0

Contains ¢ Learning rate (n) = 0.1

Contains & . .

| 0 0 9t+1 _ Ht . UVQL(f(X(l); 0),y(l))
Contains 0 1
“I’m”

—0.5
natresn)=[ 1]
—0.5

0 —0.5 —0.5 —0. 05 0 05
t+1 _ gt _ OF Y — |0
0 0t —nVeL(f(x®;6),y®) H l—o 5] l 0. 5] l ] I—o 05| = |o. 05] @
0 —0.5 —0.5 —0.05!  l0.05

o OO O
oS OO O



Mini-Batch Training

« Stochastic gradient descent chooses a single random example at a time ...this can
result in choppy movements!

« Often, the gradient will be computed over batches of training instances rather than a
single instance

« Batch training: Gradient is computed over the entire dataset
 Perfect direction, but very computationally expensive

* Mini-batch training: Gradient is computed over a group of m examples

1/23/20 Natalie Parde - UIC CS 521

61



Mini-Batch Versions of Cross-
Entropy Loss and Gradient

» Cross-Entropy Loss:
» L. (training samples) = — Y™ Lo (5®, y®)

e Gradient:

. L _ 2 mlo(w-x® +b) - y(i)]xj(i)

de m
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Regularization

 To avoid overfitting, regularization terms (R(0)) are usually added to the loss
function

* These terms are used to penalize large weights (which can hinder a model’'s
ability to generalize)

« Two common regularization terms:
» L2 regularization
* L1 regularization

1/23/20 Natalie Parde - UIC CS 521
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L2 Regularization

* Quadratic function of the weight values

« Square of the L2 norm (Euclidean distance of 8 from the origin)
* R(6) = 16115 = ?:1 9]'2



L1 Regularization

 Linear function of the weight values

« Sum of the absolute values of the weights (Manhattan distance from the
origin)
* R(O) =0, = ?:1|Hi|



Which regularization
term is better?

L2 regularization is easier to optimize (simpler derivative)
» L2 regularization — weight vectors with many small weights

* L1 regularization — sparse weight vectors with some larger
weights



Multinomial Logistic
Regression

e Other names:
« Softmax regression
 Maxent classification

« Uses a softmax function rather than a sigmoid function

« Softmax takes a vector z of arbitrary values (same as the sigmoid function) and
maps them to a probabillity distribution summing to 1

eZi
° ) = —
softmax(z;) ST .7
j=1

1/23/20 Natalie Parde - UIC CS 521
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Interpreting
Models

« What if we want to know more than just the correct classification?
« Why did the classifier make the decision it made?

 In these cases, we can say we want our model to be interpretable

« We can interpret logistic regression models by determining how much weight is
associated with a given feature
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This is a key advantage of logistic
regression over neural models.

« Manually-defined features facilitate interpretability
 Implicitly-learned features can be very difficult to interpret!

« Because of this, some researchers may choose to use logistic regression rather than
neural models if they are particularly interested in which factors are influencing the
model’s decisions

« Common example: Healthcare applications

» This allows logistic regression to function not only as a simple classification model, but
as a powerful analytic tool
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Summary: Logistic Regression

* Logistic regression is a discriminative classification model used for supervised machine learning

» Itis characterized by four key components:
* Feature representation
» Classification function
* Loss function
* Optimization function

- Classification decisions are made using a sigmoid function for binary logistic regression, or a softmax function for multinomial logistic
regression

» Loss is typically computed using a cross-entropy function
« Weights are usually optimized using stochastic gradient descent
» Avregularization term may be added to the loss function to avoid overfitting

 In addition to serving as a simple classifier and a useful foundation for neural networks, logistic regression can function as a
powerful analytic tool



